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Energy loss by electric and magnetic charges in matter 
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Advanced Studies, Trieste, Italy 

Received 16 March 1983 

Abstract. Exact expressions for the electromagnetic fields of a charged particle through 
a dispersive and dissipative medium have been used to calculate exact expressions for the 
energy loss due to distant collisions. These are evaluated using Fermi’s one-oscillator 
approximation to the dielectric constant. For particle velocities with p < E ; ” ’  the results 
are identical to those of Fermi for an electric charge and to those of Ahlen for a magnetic 
monopole. For @ > E , ” ‘  the present results differ from those of these authors. It is 
shown that this is due to their incomplete treatment of the conditions imposed by the 
model for the dielectric constant. The relevance of these results to the detection of 
magnetic monopoles and of dyons is also discussed. 

1. Introduction 

The concept of the magnetic charge as the magnetic counterpart to the electric charge 
has been admitted and utilised in classical physics by J J Thomson (Adawi 1976, 
1977). Its introduction within the framework of quantum mechanics is due to Dirac 
(1931), who utilised it in a fundamental manner so as to account for the quantisation 
of electric charge. Schwinger (1969) made the ultimate generalisation and postulated 
the existence of particles which carry both electric and magnetic charges. He called 
such particles dyons and he suggested their use so as to account for quark confinement. 

These considerations were further reinforced through subsequent developments 
in gauge field theories. Thus ’t Hooft (1974) and Polyakov (1974) independently 
succeeded in showing that such theories give rise to magnetic monopoles. Then Julia 
and Zee (1974) showed that such theories do also contain dyons among their possible 
solutions. As a consequence to these results, theoretical interest in magnetic 
monopoles, which has been strong from the very beginning (Recami 1978), was greatly 
enhanced (Goddard and Olive 1978, Craigie et a1 1982). 

The fundamental character of these concepts did not escape the attention of 
experimentalists. Thus as early as 1951 Malkus published the results of an experiment 
designed to detect monopoles produced in the atmosphere by primary cosmic rays. 
Since that time there has been a surge in experiments which searched for monopoles 
produced either by cosmic rays or by accelerator beams, or trapped in terrestrial, 
meteoric or lunar rocks. But by the time of the Jones (1977) survey only one 
experiment (Price et af 1975) reported a positive result consisting of the detection of 
a magnetic monopole in the primary cosmic ray flux. The result of this experiment 
generated considerable interest at the time and led to subsequent comments by other 
investigators. Fleischer and Walker (1975) maintained that the data could not preclude 
alternative interpretations, and Friedlander (1975) held that this was rather likely. 
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This prompted Price et a1 (1978) to undertake further analysis of their experiment 
which led them to exclude completely the possibility of having detected a magnetic 
monopole. 

Since then, Hoffman er a1 (1978) reported the negative result of a search at the 
CERN-ISR, and Bartlett et a1 (1978) reported the negative findings of a search in 
cosmic rays. In a very recent survey of the subject, Giacomelli (1982) concludes that 
all experimental searches so far have been negative. However, more recently Cabrera 
(1982) published first results of an experiment in which he reports detecting a magnetic 
monopole through its passage within a superconducting ring. 

This uncertain situation and the impact of its outcome have prompted many 
calculations of the behaviour of charged particles in matter (Ahlen 1982, Ahlen and 
Kinoshita 1982, Ford 1982, Trefil 1982). This is very relevant to the experimental 
effort aimed at the detection of magnetic monopoles, since this relies on the contrast 
between their behaviour and that of electric charges. The present work must be 
conceived in this vein. It bears on experiments which utilise ionisation loss for the 
detection of magnetic monopoles. In  what follows we will try to make a case for the 
use, in this respect, of exact expressions for the electromagnetic fields of a charged 
particle passing through a dispersive and dissipative medium which we have obtained 
in recent work (Saffouri 1982). 

The first instance in which these fields would be of value is in the calculation of the 
so-called density effect in the energy loss by charged particles in dense media (Ahlen 
1980). This effect, as Ahlen points out, is quite adequately treated in a classical 
fashion. Hence, our expressions for the fields are ideally suited for this calculation. 

Second, these fields are the natural choice in the evaluation of the stopping power 
for magnetic monopoles in the manner carried out by Ahlen (1976, 1978). 

Third, since these expressions for the fields take into account both electric and 
magnetic dispersion, they should be well suited to treatments similar to that carried 
out by Martem’yanov and Khakimov (1972). 

To justify these claims, we calculate the density effect. We do this within the 
approximations utilised by Fermi in his original article (Fermi 1940). This should 
suffice to exhibit the usefulness and relevance of our results. The results of our 
calculations for electric charges agree with Fermi’s calculation for the case of particle 
velocities smaller than the phase velocity of electromagnetic radiation in the medium. 
For particle velocities greater than this phase velocity, our result is markedly lower 
that that given by Fermi. This arises out of the circumstance that the fields acquire 
different forms in either velocity range and that the domain of affected frequencies 
is also different. It should be possible to observe this effect experimentally. But then 
a more realistic model for the medium should be used along the lines first followed 
by Halpern and Hall (1948) and by Sternheimer (1952) and subsequently perfected 
by Sternheimer (1956, 1966, 1967). 

For magnetic monopoles we compare our results with those given by Ahlen, which 
we have referred to above. This is quite significant since we apply the same approxima- 
tions which he introduces. We also use our calculations to give an indication of the 
behaviour of dyons. By going to the asymptotic limit of the fields, we suggest a method 
for the detection of dyons which utilises the Cerenkov radiation emitted by them. 
This method has the advantage that i t  could, in principle, determine their relative 
charge. 

The arrangement of material is as follows. In 9: 2 we use the exact electromagnetic 
fields for either an electric or a magnetic charge moving in a dispersive and dissipative 
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medium to derive exact expressions for the energy loss by the particle. In 9: 3 we 
discuss the model of the dielectric constant which we are using and the restrictions 
which it imposes on our calculation. In  particular, we give a careful critique of Fermi’s 
calculation and we point out the limitations which make it differ from ours. In $4 
we use the approximation procedure outlined in 9: 3 to evaluate the energy loss 
expresssions. In 9: 5 we compare our results with those of Fermi and of Ahlen, and 
in 3: 6 we sketch the relevance of our results to the detection of the dyon. We present 
our conclusions in 9: 7. 

2. The expression for the energy loss 

We consider a material medium which exhibits both dispersion and dissipation to 
electromagnetic radiation. Its dielectric constant, E ,  and magnetic permeability, p, 
will then be complex functions of the frequency w of the radiation and will satisfy 
the following two relations: 

E ( U )  = E *(-CO), p ( o ) = C L * ( - w ) .  (2.1) 

In the above the asterisk stands for complex conjugation. A particle carrying either 
magnetic or electric charge will lose energy upon passage through the medium due 
to its dissipative nature. When the velocity of the particle exceeds that of the phase 
velocity of electromagnetic radiation in the medium, it will also emit Cerenkov 
radiation. 

The density effect arises out of the circumstance that for the distant collisions 
between the charged particle and the atoms of the medium, the polarisation of the 
medium must be taken into account. These collisions are defined by a minimum 
impact parameter of the order of atomic dimensions (Ahlen 1980).  The respective 
energy loss is calculated via the standard methods of classical electrodynamics (Jackson 
1975).  

Thus for a particle moving with velocity U along the z axis the energy loss is 
calculated via the radial component of the Poynting flux. Due to the cylindrical 
symmetry of the problem, this will be given by a function of the form S ( p ,  z ,  t) ,  where 
( p ,  z )  are cylindrical coordinates and t is the time. The energy loss by the particle 
per unit of path length per unit  time is given by 

d2Uldzdt  = 2.rrpS(p, z ,  t ) .  

In  Saffouri (1982)  we showed that the energy loss per unit of path length is independent 
of z and is given by the expression 

m d U  
- dz = 2.rrp I_, ~ ( p ,  z ,  t )  dt. 

This expression gives the energy which the particle deposits per unit of path length 
in the region of space starting at a distance p away from its path. In particular, in 
the case when the particle emits Cerenkov radiation, this formula will include energy 
lost in this form also. 

Equation (2.2) is our starting point for the calculation of the energy loss. We must 
then evaluate the Poynting flux. For this we need the electromagnetic fields of the 
particle, which we take from Saffouri (1982) .  We have shown there that these fields 
will have two forms depending on whether the velocity of the particle is smaller or 
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greater, than the phase velocity of electromagnetic radiation in the medium. We have 
used the symbol c ' ( w )  to represent the phase velocity of electromagnetic radiation of 
frequency w,  and we showed that 

c ' ( w )  = c/(Re E ( w ) ~ ( ( w ) ) ~ / ' .  (2.3) 

In the above, c is the velocity of light in vacuum and Re stands for the real part of 
the expression following it. Introducing the symbol K ' ( U ) ,  

K 2 ( W ) ' E ( w ) p ( W )  (2.4) 

we can then characterise the above two conditions by Re K ~ ( w )  < l /p2  and Re ~ ' ( w )  > 
l / p 2  respectively, where /3 = v/c. We now turn to the calculation of the radiation 
loss, where we first treat the case of the magnetic charge and then that of an electric 
charge. 

2.1. Energy loss for a magnetic charge 

We consider a particle which carries magnetic charge e' and which moves with velocity 
U along the z axis. Our treatment must then distinguish between the two regions of 
values of U which we have just mentioned. 

Case 1. U < c ' ( w ) .  The fields are given by 

where 

y ' ( w )  = (1 - p 2 K z ( w ) ) - 1 ' 2 .  

KO and K1 are the modified Bessel functions of the third kind of order zero and one, 
respectively, ( p l ,  q51, k )  are the cylindrical unit vectors, and cc stands for the complex 
conjugate. 

We use these expressions for the fields in order to calculate the Poynting flux. We 
substitute this in (2.2) to obtain 

This is the exact expression for the energy deposited per unit of its path length by 
the magnetic charge in the region of space beyond the radial distance p.  

Case 2. U < c ' ( w ) .  The fields now have the following form: 
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where HA’’ and H!” are Hankel functions of the first kind of order zero and one, 
respectively, and y ‘ ( w )  is now defined as follows: 

y ’ ( w )  = ( p 2 K 2 ( w ) -  p2. (2.9) 
The corresponding energy loss expression is given by 

2.2. Energy loss for an electric charge 

The fields for the electric charge are obtained from those which we have given above 
for the magnetic charge via the following standard substitution. Hence, we do not 
need to exhibit them ecplicitly here. We discuss the fields in the following obvious 
notation: 

Eelectric = e dw Eelectr ic (w 1, I 
I B::rj 

The substitution is then as follows: 

Belectric = e  dwF(U)Emag(W). (2.11) I Eelectric = - e  dw p, 

Using the resulting fields in (2.2), we obtain the following expression for the energy 
loss for the case U < c ’ ( w ) :  

where 

y ’ ( w )  = ( 1  - p 2 K 2 ( w ) ) - ’ / 2 .  

This is the main result given by equation (2.2) in Fermi (1940). 
The corresponding result for the case U > c ’ ( w )  is now given by 

where 

y ‘ ( w )  = ( P 2 K 2 ( W )  - p2. 

2.3. Comments 

A few remarks are in order here. First, we see from the preceding results that the 
energy loss for a magnetic charge is obtained from that for an electric charge by 
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replacing (e2/E ( U ) )  in the spectral integral by (e ’2 /p  (0)). This is a rigorous demonstra- 
tion of a well known rule (Ahlen 1976). Furthermore, since for dielectric media, for 
instance, p ( U )  = 1 ,  while E (0) is highly frequency-dependent, this replacement will 
have as a consequence that the energy loss for monopoles will be quite distinct from 
that for electric charges. 

Second, the above four expressions for the energy loss are all exact. By putting 
into them the appropriate expressions for the susceptibilities of the medium, we can, 
in principle, calculate the correction due to the density effect to any desired accuracy. 

Third, we note that the results for U < c ’ ( w )  can be obtained from those for U > c ‘ ( w )  
and vice versa via the following substitution: 

However, we must point out that in the actual evaluation of the preceding expressions 
for a specific model for the dielectric constant of the medium, we cannot simply obtain 
one result from the other through this strategem. The hindrance comes from the 
limits of integration which are not the same in both cases. We will clarify this matter 
further in S 3.  

3. General considerations 

In evaluating the above expressions, we will follow Fermi and make two major 
assumptions. The first concerns the medium and the second concerns the magnitude 
of the distance p beyond which the energy is deposited. As to the  medium we will 
assume it to be a pure dielectric. This allows us to put the magnetic permeability 
equal to unity:  

p = l .  ( 3 . 1 )  
Furthermore, we will assume that the dielectric constant of the medium is given by 
the single oscillator formula. Adopting Fermi’s notation, we write this as 

( 4 m e 2 / m )  
w o - w  -2ipw 

e ( w ) = l +  * 2 

where e and m are the charge and the mass of the electron, n is the number of 
electrons per unit volume, w o  is the natural frequency of the oscillator, and 2 p  is the 
coefficient of the dissipative force. We introduce the electronic plasma frequency of 
the medium wp: 

(3 .3 )  
2 w p  = 4 m e 2 / m  

e,  = E ( 0 )  = 1 + ( w , / w ” ) 2 .  (3.4) 

x = (w /wo)  (3 .5 )  

and the static dielectric constant .so: 

Introducing the dimensionless variable x 

we express the dielectric constant in  the following explicitly dimensionless form: 

E ( W )  = & ( X I  = 1 + ( E o -  1)/(1 - x 2  -2 iqx )  

77 = ( P I W O , .  

where 
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Whenever necessary we will assume that the dimenisonless constant q is very small: 

q < <  1. (3.8) 

As to the variable p we will fix its value by putting it equal to a distance b of the 
This implies that we are considering a medium with little dissipation. 

order of an angstrom: 

p = b < l A .  (3.9) 
We will then assume that the resulting argument of the various forms of Bessel 
functions occurring above; namely, the variable wb/y ’ (w)Pc  is so small as to allow us 
to use the small argument expansions for these functions. 

3.1. The limits of integration 

In order to evaluate the integrals which occur in the expressions for the energy loss, 
we must find the domain of allowed values of the frequency-and equivalently 
x-which is selected by either of the two inequalities restricting the range of values 
of Re K ~ ( u ) .  Due to equation (3 .1)  the function K ~ ( u )  is now given by 

2 
K ( U )  = K 2 ( X )  = & ( X )  

Substituting from (3 .6)  into this relation, we obtain 

R e ~ ’ ( w ) = R e p ( x ) =  1 + ( ~ ~ - l ) ( l - x * ) / [ ( 1 - ~ ~ ) ~ + ( 2 ~ ~ ~ ’ ] .  (3.10) 

We give a sketch of this familiar function in figure 1, where we already make use of 
the smallness of q to keep terms up to the first order in it. By marking off the values 
of 1/p2 on the R e & ( x )  axis we translate the inequalities into ranges of values of 
Re K ’(x 1. 

t i 

/ \ ii 
E 3  ’ \ 

I - 
Y, ( I -q i  x, xj 7 3  U+qi A 

Figure 1. A schematic plot of the function Re E ( X )  against x .  The three Roman numerals 
indicate the three regions of velocity discussed in the text. 

To start with, since l /p2  > 1 all the possible values of l /p2  lie above the horizontal 
line at E = 1. This range of values divides into three regions which give different 
domains of allowed values for x. We indicate these three regions on figure 1 and we 
give here their definition. 
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I: Re K ~ ( x )  > emax, 

11: < E O  < Re K ~ ( x ) <  Emax, 

111: 1 < R e  ~ ~ ( x )  < eo  
where 

(3.11) 

E m a x =  [(~0+3)/4+(&0-1)/4771. (3.12) 

For each of the two velocity ranges the appropriate results will be as follows. 

Case 1. U < c ' ( w ) .  Since now Re K * ( w ) >  l / p z ,  the value of 1/p2 can lie in any of 
the three regions. For each region we list the resulting domain of integration over x : 

I: LO, 001, 

111: [x3,00]. 

11: [O ,  xi1 U [x2, a), (3.13) 

In the above, xi, x2 are the abscissae of the intercepts of a general value of l /p2 lying 
in region I1 with the curve Re K ~ ( x )  as seen in figure 1. The same is true for x3 but 
in region 111. The symbol U stands for union. 

Case 2. U > c ' ( w ) .  In this case Re K ~ ( w ) >  1/p2, and the value of 1/p2 can lie only 
in regions I1 and 111. For these the alllowed domains of integration are as follows: 

11: [Xi, x21, 111: [O,X3], (3.14) 

where xl, x2, x3  have the same meaning as in the preceding case. 

3.2. Comments on Fermi's calculation. 

We are now in a position to clarify the remarks which we made in 9: 2 concerning 
Fermi's treatment of the energy loss by electric charges. Fermi considers two ranges 
of particle velocities which he distinguishes via the sign of the following parameter: 

(3.15) 

Thus for a > O ,  we have 1/p2<E0, which means that l /p2  lies either in region I or 
in region I1 of figure 1. For this case Fermi uses equation (1.12) to evaluate the 
energy loss and chooses [0, 001 as the domain of integration. In view of our relations 
(3.11) and (3.13) this means that his calculation in this case holds for particle velocities 
which satisfy the condition 

a = (1  - E ~ ~ ~ ) / ( I  - p 2 ) .  

1/P2>&max. 

In  other words, they are velocities which lie in region I of figure 1. Using equation 
(3.12) for and keeping terms up to lowest order in 77, we can write the above 
relation in the form 

p 2 = s { [ ( E O -  1) /4~]+1} - '=0 .04 .  (3.16) 

We will give the justification for this result in a later section. For the time being we 
remark that this region includes the range of velocities from relatively appreciable 
values down to the order of atomic velocities: p --a (Ahlen and Kinoshita 1982). 
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The alternative case corresponding to a < O  is characterised by l / p 2  < c0.  This 
means that l / p 2  lies in region I11 of figure 1. The velocity would lie either in the 
range U < c ’ ( w )  or in the complementary range U > c ’ ( w ) .  For the first range we must 
use (2.12) in calculating the energy loss together with the domain of integration given 
by 

1x3, C O 3 7  

where x3 satisfies the inequality 

Since we take 7 to be very small, we see that 

x3 = 1. 
For the second range of velocities we must use (2.13) with the domain of integration 
given by [0, x3]. 

Fermi calculates this case by evaluating (2.12) for a < O  and retaining the same 
domain of integration which he used in the preceding case; namely, [0, CO].  This he 
takes to be the result of energy loss for U< c ‘ ( w ) .  Our discussion so far would seem 
to indicate that this procedure is inconsistent with our treatment. 

In view of this we feel justified in presenting a consistent treatment of this case 
in what follows. As we shall see later on our result will differ markedly from that 
given by Fermi for this case. This would call for a careful experimental examination 
to decide in favour of either treatment. 

3.3. Choice of the limits of  integration 

Case 1. U < c ‘ ( w ) .  Since in this case there are three possible forms for these limits 
depending on which region of particle velocities we consider, a possible approach 
would be to calculate the energy loss for each region. This would indeed be the proper 
procedure to follow in a more exhaustive treatment employing a more realistic model 
for the medium in the manner utilised, for instance, by Sternheimer (1952, 1956, 
1966, 1967). However, since we intend to use Fermi’s result for electric charges in 
this range of velocities, we must adopt his choice of limits for our treatments of the 
corresponding case of magnetic charges. Consequently, we will start from (2.7) and 
use in it the domain of integration given by [0,03]. 

Case 2. U > c ‘ ( w ) .  In this case the value l /p2  lies either in region I1 or in region I11 
of figure 1. In the preceding case we have chosen the region which allows us to go 
to the limit of small velocities. To obtain maximum contrast with that case we must 
choose now the region which allows us to go to the oppositie limit of high velocities. 
This means that we must choose l /p2 to lie in region 111. To be specific, we will 
consider ranges of p ’ which satisfy the following condition: 

1/E,cp2q1 -q). (3.17) 

We write the corresponding domain of integration over x in the form 

[O, 1-61 (3.18) 

since we expect 6 to be a small number. To find 6, we put Re E ( X )  = l / p 2  and 
x = (1 - 6 )  in (3.10) and we solve the resulting equation for 6. To lowest order in 7, 
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the solution is given by the expression 

6 = 2772/(&0- 1) y2  (3.19) 

where 
2 -1/2 y 2 = ( 1 - P )  . 

In the present case the upper limit of integration depends on the velocity and the 
above equation gives this dependence correct to lowest order in 77. 

4. Evaluation of the energy loss expressions 

4.1. Energy loss by a moving magnetic charge 

Case 1. v < c ' ( w ) .  We start with (2.7) and we use in it the limits of integration 
appropriate to the velocity range specified by (3.16). We also put CL ( w )  = 1 in accord- 
ance with (3.1) and we replace p by the constant b to obtain the relation 

Next we approximate the Bessel functions in the integrand above by their small 
argument values and we substitute the expression (3.6) for & ( U ) .  Using the dimension- 
less variable x, defined by (3.5), we write the above relation as 

Re Jom dx { ix (7 - 
4n (ee _ -  --  dU 

dz ( E ~  - 1)P2mc 

(4.2) 

where a is defined by (3.15). 
We have expressed our result in this form so as to correspond to the expressions 

given by Fermi (1940). The above integral splits up into six integrals which have all 
been evaluated by Fermi and we take them from his article. Our final result is then 
given as follows: 

(4.3) 
This is to be compared with the corresponding expression obtained for the case of an 
electric charge by Fermi: 

dz 

We will find i t  useful at this stage to introduce the plasma wavelength Ap:  

Ap = c/w,. (4.5) 
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With the aid of Ap and wp we define a characteristic energy density for the medium: 

ua = h W p / A p .  (4.6) 

Using these quantities, we express the above results in the form 

d U  - =a’uo[ilog(-7) 4 P 2  
dz 3 17 (bin,) 

(4.7) 

d U  - =auo[-log(- 1 4 7) P Z  dz 2p2  3 17 ( b / K p )  

where a’ is the magnetic fine structure constant: 

a !  = e”//Ac (4.9) 

and a is the usual fine structure constant. We will defer discussion of these results 
until 9: 5 .  However, we point out  now that (4.7) is identical with the expression, correct 
to zero order in 77, used by Ahlen (1976) for the respective velocity range. His result 
was originally derived by Tompkins (1965) starting from Fermi’s result which we 
quote here. 

Case 2. U > c ‘ ( w ) .  Our starting point now is expression (2.10) for the energy loss. 
We apply to it the same approximations which we used in the preceding case and we 
use in it the limits of integration given by (3.18) which are appropriate to the velocity 
range (3.17). The resulting expression has the form 

P 2 ( & o -  1) 1 ( 1 - 6 )  d U  47rn(ee’)’ - -  dz - ( e o - l ) p 2 ~ c 2 R e ~ o  dxx( ( l -x2 -2 iqx )  -7) 

x { 1 +  - [ log ( 3 . 1 7 ~ n e ~ ; ’ ~ )  + log x +log (“ +x2+2i77x)]] (4.10) 
( E o -  1)my U 1 - x 2 - 2 i ~ x  

where 

a = [ ( F O P Z  - 1)/(1 -P2,1. (4.11) 

This expression is quite distinct from that given by (4.2) for the velocity range U < c ’ ( w ) .  
This should further clarify our contention in 3: 3 that it is not permissible to use the 
same expression, albeit with the appropriate limitations on the parameter a, to drive 
the energy loss in either velocity range. 

The finite domain of integration in the present case complicates the evaluation of 
the integrals as compared with the preceding case. However, we do not need to 
undertake the arduous task of trying to evaluate these integrals exactly-which indeed 
may not be possible for some of them. Our aim from the very beginning has been 
to obtain expressions in powers of the small parameter 77. Hence, we will expand this 
integrand in powers of 77 and then keep terms up to the first order only. The result 
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is as follows: 

3 .17~ne 'q '~ ) (  x .)' 
-p ' (&,- l ) [ ( l+log (E0-l)my U l - x  

x z  1 x210gx2 X 2  a + x 2  
+-- 1 -x2 a + x  2 +  (1 -x2)z + --log(i-IT;i)lj~s (1 - x 2 ) 2  (4.12) 

The above integrals are tedious but they can all be evaluated in an elementary fashion. 
Only the last two terms need special attention. This warrants our including the result 
of evaluating them in an appendix. We give here the result of integration of the above 
expression: 

d U  47~n(ee ' )~  _ -  - (P2(&;-1) [i- dz (E, , -  1)P2mc 

(4.13) 

where f (x )  is a function of order unity which we present in the appendix, and the 
symbol 4' stands for 

5 = 3 . 1 7 ~ n e ~ b ~ / ( & ~ -  l )myzuz .  (4.14) 

When putting in the limits of integration in the above expression, we find that the 
lower limit gives a zero contribution. At the upper limit since from (3.20) the quantity 
S is of order 773,  we will evaluate it as an expansion in powers of S .  To this end we 
rearrange the above expression as 

+log(l  -x)  log - 
(l:x) 

P % o -  1) 5xZ(a +x2)  
77 [&log (1 -x2) 

- 
21r 

- 4  (" +:log (a + W) tanh-l 

a + l  (1 -x2)  

4 Ji 
(a +1) 4, 0 

(1-3) 

tan-' X + 2f(x)]} . +- (4.15) 

In this form the dominant terms will be those in the first square bracket. The others 
will be of the order 77 or even smaller. If now we follow Fermi and compare in the 
final result only terms to zero order in 77, then we need keep only the terms in the 
first square bracket above. Putting in the expression (3.19) for 6, we obtain the 
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following final result for the energy loss to this order of magnitude: 

(4.16) 

We now make use of the characteristic parameters which we have introduced above 
in order to write this result in the following fashion: 

(4.17) 

We will again leave further consideration of this result to 9: 5 except to quote here 
the corresponding result of Tompkin (1969,  which is used by Ahlen (1976): 

(4.18) 

4.2. Energy loss by a moving electric charge: v >c’(w) 

Our starting point now will be (2.13). After applying to it the same considerations 
which we have just used in treating (2.10), we obtain the expression 

( E O -  1) 1 (1-61 4rne  
dx x - -  - d U  

dz (&o-l)p’mc2Re/o ( ~ ~ - x ~ - 2 i q x  -7) 
x [ l+  ;(log( 3.17rne b 

(4.19) 

where a is given by (4.11). Just as in the preceding case of a magnetic charge we 
expand the above integral in powers of q and keep terms only to the first order in 
q. The result is as follows: 

4 m e 4  d U  
dz ( E ~ -  1)p’mc’ 10 

( E o - 1 ) X  x 2 1 x 2  X 2  
(1-8) _ -  - 

dx I(- - 7) + y q  [7 (x + 2) 

We have written this result in this fashion so as to facilitate its comparison with the 
corresponding expression for the magnetic charge; namely, (4.12). The integrals in 
these two expressions are similar. The result of performing the above integration is 
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+ -= tanh-' - 1 - ___ JE' - ') tanh-' x 
J E O  ( JE, ( ~ ~ - 1 )  y 2  

l l - 6 )  
X +-= Eo--- -  ( E 0 + 1 )  1 ) tan-' - +g(x)]]  

v a  ( ( E o - 1 )  y 2  J ,  0 
/ 

(4.21) 

where g(x)  is a function of order unity which we list in the appendix, together with 
the result of evaluating the last two integrals in (4.20). 

In  the same way as we did with (4.13), we rearrange the terms in the above 
equation so as to group the dominant terms in the first bracket and the terms of order 
77 or higher in the second bracket. The result is as follows: 

d U  _ -  - 4 ~ n e  4 - q ( l o g ( e O - x 2 )  
dz ( e o -  1)P2mc 

) tanh-' - - ( l + i l o g  2 [ ( E O  + a )X 

JE, (1 - x 2 )  J& 

+ = tanh -1 - 1 - ~- J E o  ') tanh-' x 
J E O  ( JE, ( E O - ~ )  y 2  

(1-6) ) tan-' + g(x)]} 
J ,  0 

(4.22) 

Just as in the preceding case, we evaluate this expression by neglecting all terms of 
the first or higher order in q. We obtain the following final result: 

d U  - -- -- 4 m e 4  1 1 -- 1 77 log(- 3 . 1 7 ~  ( e O -  l )ne2b2 
dz mc2 [ p 1 0 g ( ~ c , - 1 ) 1 ' 2  2 T J G  (JG-1) 477 mc 

(4.23) 

It would be pertinent for us at this stage to make the following remark concerning 
the second term in (4.23) above. Due to the factor 77 which occurs in it, one might 
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think that it is of first order& q and hence must be neglected. However, as we will 
show in 9: 5 the quantity ( 4 ~ ~ -  1) Ehich occurs in the denominator is of order 47. 
Hence, the whole term is of order 47. 

We rewrite (4.23) as follows: 

The following is the corresponding result as obtained by Fermi: 

(4.24) 

(4.25) 

5. Comparison with Fermi's and Ahlen's results 

In order to facilitate the comparison of our results with those of Fermi and Ahlen, 
we follow Ahlen (1980) and introduce two dimensionless functions L and L' to describe 
the energy loss of electric and magnetic charges, respectively: 

dU/dz = a u d ,  dUfdz = a ' u d ' .  (5.1) 
These functions will depend on p 2  and on 6 ,  the minimum impact parameter. However, 
we must now choose an expression for b so as to exhibit the dependence of the energy 
loss on p 2 .  The natural choice for us is that made by Ahlen (1976); namely, 

b = Ae/py (5 .2)  
where Ae is the Compton wavelength of the electron. The above expression for b is 
equal to the de Broglie wavelength of the electron in the CM frame for its scattering 
with a heavy incident particle. Ahlen (1976) shows that expressions for the energy 
loss of the type which we present here are appropriate to the description of track 
characteristics of charged particles in plastic detectors. To obtain a good approximation 
to the total energy loss he recommends the above choice for b. The resulting 
expressions can then be construed as giving a meaningful comparison between the 
behaviour of electric and magnetic charges in matter. 

Putting (5.2) in (4.17) and (4.18) for the energy loss by a magnetic charge, we obtain 

(5.4) 

Equation (5.4) represents the energy loss expression used by Ahlen. We will soon 
show that these expressions hold for ultrarelativistic velocities. For such velocities 
we see that our expression for the energy loss diverges like y 2 :  
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However, the expression used by Ahlen diverges like log y 2 :  

(5.6) 

It will be seen that the above behaviour for (5.3) comes from the first term and is 
directly related to the upper limit of integration in (4.11). 

The corresponding expressions for the energy loss by an electric charge; namely, 
(4.24) and (4.25), become 

1 2 (dU/dz)Ahien - ~ ’ u o  log Y 
P - 1  

(5.7) 

( 5 . 8 )  

Again the behaviour at ultrarelativistic velocities is quite distinct. Our calculation 
gives a finite result; namely 

(5.9) 

Fermi’s calculation leads to the same kind of logarithmic divergence as in the Ahlen 
result above: 

(5.10) 

Again the above behaviour of our result for the energy loss is traceable to the upper 
limit of integration in (4.19). 

This serves to highlight the dependence of the calculation of the energy’loss on 
the model used for the dielectric constant. A proper calculation should use a more 
realistic model. However, the present results should serve to illustrate the importance 
of handling the various ranges of velocity in the proper fashion. 

5.1. Numerical results 

In order to be able to put our calculations in numerical form we must fix the parameters 
which occur in our model for the dielectric constant. We will choose water as our 
medium, which will then fix n to be equal to 3 . 3 5 ~  1023cm-3 and will give u p =  
3.29 x 10l6 s-’. As for w o  we will adopt for it the value determined by the ionisation 
potential for water which has been used by Sternheimer (1956) in his calculation of 
the density effect; namely I = 74.1 eV. This gives w o =  1.12x lO”s-’. Using these 
values in (3.4) we obtain g o =  1.09. For the justification of this procedure we refer 
to Ahlen (1976). 

We turn now to the evaluation of 77. From Jackson (1975) we have the following 
expression for 77 : 

(5.11) 
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where a ( w )  is the absorption coefficient for liquid water. We must choose a value 
for a ( U )  which is consistent with our assumption of weak absorption. By comparison 
with figure 7.9 in Jackson (1975), we find that the choice a ( w )  i= lo-' cm-' is not too 
excessive in either direction. This choice fixes the value of w in the preceding equations 
to be 3.98 x 1014 s-'. Putting all these results in (5.1) we obtain 

q = 1.30 x lo-'. (5.12) 

gives a posteriori justification for our choice of parameters. It is seen 

Putting the values of c0 and 77 into the inequality (3.17), we find that the range 

0.917<p2<0.987.  (5.13) 

These expressions are then supposed to hold in the ultrarelativistic domain of velocities. 
We now put the above numerical values for the parameters in (5.3) and (5.4) to 

obtain the following expressions for the energy loss by a magnetic charge: 

This value of 
to correspond to weak dissipation. 

of validity of our results; namely, (4.17) and (4.24), is given by 

dv =a'uo[0.551y2 log(6.21 x 106p2)+flog(1.33 x 1O2y2)--5.56/p2y2], 
dz 

( 5 . 3 ~ )  

( 5 . 4 ~ )  

In figure 2 we plot the dimensionless functions L' and Lahlen as functions of p 2  to 
give an idea of their relative orders of magnitude. 

With the same substitution, equations (5.7) and (5.8) for the energy loss of an 
electric charge acquire the following forms: 

dU/dz = auo[0.0498 log(6.21 x 106p2)+ 1.20/p2 - 5.56/p2y2], ( 5 . 7 ~ )  

( 5 . 8 ~ )  (dU/dz)Fe,,,=auo[(2P2)-' log(8.26X 10 /3 y )-5.56/p2y2].  

We show the corresponding dimensionless functions in figure 3. 
Figures 2 and 3 give a clear indication of the sizable modification which our method 

brings about in the energy loss. Our result for magnetic monopoles is seen to be 
appreciably higher than that given by Ahlen in the whole velocity range. It diverges 
strongly from it towards high values of the velocity. For electric charges our result 
is consistently lower than Fermi's for the whole velocity range. 

(dU/dt)Ahlen=a'U& log(8.26 X 10 8 2 2  p y )-5.56/p2y2]. 

8 4 2  

6. On the detection of dyons 

For a dyon carrying electric charge e and magnetic charge e '  the fields will be given 
by the sum of the respective fields which we gave in SI 2. Due to the form of these 
fields there will be n o  cross terms in the Poynting flux coming from the product of 
the fields of the electric charge with those of the magnetic charge. The energy loss 
for a dyon will then be given by 

dU/dz = uo[aL(p2)+a'L'(p2)] (6.1) 
where L ( p 2 )  and L ' ( p 2 )  are the dimensionless functions which we introduced in 9: 5. 
From this and our preceding results we see that the energy loss by a dyon is higher 
than that for either an electric charge or a magnetic monopole for all velocities. At 
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Figure 2. The dimensionless energy loss function 
for an ultrarelativistic magnetic charge. L ' ( p 2 )  is 
our result and L'(/32)Ah,e, is that of Ahlen. 

92 0 9 4  0 9 6  0 90 

Figure 3. The dimensionless energy loss function 
for an ultrarelativistic electric charge. L ' ( p 2 )  is our 
result and L'(P')F~~, , ,~  is Fermi's. 

ultrarelativistic velocities it will be characterised by a monopole-type behaviour, i.e. 
energy loss diverging as y 2 .  For low velocities it will show the dominant behaviour 
of an electric charge; namely, energy loss varying as l/p*. 

To be more specific than this, a proper treatment of the energy loss must be 
undertaken. This involves using the proper expression for the dielectric constant and 
then repeating our calculation of L and L' for the whole velocity range. The resulting 
expression for the dyon should give a good description for track characteristics in 
plastic detectors (Ahlen 1976). This will be in the form of a family of curves 
characterised by the unknown parameter ( e ' / e )* .  This parameter would, of course, 
be determined by a detection of a dyon by an experiment utilising energy loss by 
ionisation along the lines outlined here. 

6.1. Determination of the relative charge of the dyon 

The method which we have just suggested for the detection of the dyon can only 
measure the magnitude of its charges. To  determine the relative sign of these charges 
we must seek some other method. We suggest here a method which would work for 
dyons which move fast enough so as to emit Cerenkov radiation. This consists in  
measuring the polarisation of the emitted radiation. We will now explain this method 
which must be considered as complementary to the method of energy loss which we 
have sketched above. 

We start from the fields of 9: 2 for the case U > c ' ( w ) .  Taking the asymptotic form 
of the fields and ignoring dissipation, we can readily show that the fields of a dyon 
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are given as follows: 

In the above expressions all symbols have been defined above except for the vectors. 
We now explain how they are defined. The vector n ( w )  is a unit vector which we 
define as 

It forms a complete basis together with cpl and the unit vector I ( w )  which we define 
as 

Figure 4 illustrates the meaning of these vectors. I ( w )  generates the Cerenkov cone 
which envelopes the Cerenkov radiation with frequency w .  The vector n ( U )  is normal 
to this cone and points along the direction of the Poynting flux, 

n ( w )  = ( Y ’ ( ~ ) P I  - l c ) /P ’b ) fb ) .  (6.3) 

l ( w )  =cpl  x n ( w ) .  (6.4) 

Figure 4. The Cerenkov cone and the vectors /(U) and n ( w )  and the Cerenkov angle B c .  

To define the polarisation vector in (6.2) we need to introduce an angle @d(w) 

which we will define as follows: 

(6.5) 
We recall that the susceptibilities are now real since we are ignoring dissipation. The 
polarisation vector I l ( w )  is then given by 

(6.6) 

8 d b )  =tan-’(&(w)I(~~(w))  1 / 2  (e I / e ) .  

f l ( w )  =(cos Od(w)I(w)+sin e,(w)cpl). 
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The vector f 2 ( w )  is given by 

I z ( o ) = n x f 1 ( w )  (6.7) 

which means that also in the case of the dyon the energy flows normal to the Cerenkov 
cone. 

Equation (6.6) shows that a measurement of the polarisation of the Cerenkov 
radiation is central to the determination of the type of particle emitting this radiation. 
For an electric charge = 0, and for a magnetic charge it equals r / 2 .  Any other 
value of this angle would mean the existence of a dyon and would give its relative 
charge as seen from (6.5). Coupled with the method of energy dissipation, this would 
give the value of either charge in terms of the other. 

7. Conclusions 

We have argued above that a proper calculation of the density effect should start with 
the exact expressions for the electromagnetic fields of a charged particle in matter. 
The expressions for the susceptibilities which are used in these equations would then 
result in restrictions which must be handled correctly. We have demonstrated this 
within the ambit of the Fermi model. The lack of a proper treatment of the conditions 
imposed by the model leads to an appreciable variation in the results. 

We feel justified in concluding that a proper calculation using the correct 
expressions for the susceptibilities would be valuable and should be compared with 
experiment. Such a result for plastic detectors, for instance, should be useful in 
establishing track characteristics for magnetic monopoles and for dyons. 

Appendix. Some integrals and functions 

A. 1. The last two integrals in (4.12) 
2 x logx 

X 2  a + x 2  (ii)  log (7) dx 
1 ( 1  -x2)2 1-x  

X ' 2 n + 1 )  
l + l o g x ) t a n h - ' x +  1 

h = O  (2n + 1) 

= { X [log(;) a + x  -11 +$log( l -x) log  

+ L[(") -;log- + ll2] tanh-' x + ___ J;; 

+$  [$(=)n+cc]]. & + i  

2(1 -x2)  

X tan-'- 
2 a + l  (1 -x2) (a  + 1 )  J;; 

m 
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A.2. The function f(x) in (4.13) 

1-x 

n = l  n = l  

A.3. The last two integrals in (4.20) 

+: " +(+- ( -1y l + x  (--)"I 1 -x  
n = l  n 4 ~ 0 - 1  J E O -  1 

A.4. The function g(x) in (4.21) 

g ( x ) =  -( 1 f +[(+- 1 - x  (J=)n] 

2 J ~ o  n = l n  J & + I  
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